

Surface Reflectance Intercomparison for Vegetation (SRIX4VEG) Overview

N. Origo, R. Morrone, M. Sinclair & B. Mota (NPL) F. Camacho & J. Sanchez-Zapero (EOLab) J Dash & L. Brown (Uni. Southampton) V. Boccia (ESA)

Endorsed by:

Committee on Earth Observation Satellites

Funded by:

In collaboration with:

Australian Government

Geoscience Australia

CSIRO

Australia's National Science Agency

In partnership with:

Project partners:

- ESA-funded Fiducial Reference Measurements for Vegetation (FRM4Veg)
- Support the validation of key European satellites and vegetation biophysical variables: surface reflectance (SR), fraction of absorbed PAR (fAPAR) and canopy chlorophyll content (CCC)
- FRMs have the following qualities:
 - Documented SI traceability (or conform to appropriate international community standards)
 - Independent from the satellite geophysical retrieval process
 - Accompanied by an uncertainty budget for all instruments and derived measurements
 - Adhere to community-agreed, published and openly-available measurement protocols/ procedures and management practices
 - Accessible to other researchers allowing independent verification of processing systems

Why surface reflectance over vegetation?

fiducial reference measurements for vegetation

- Dynamic in:
 - Time
 - Space
 - Spectrally
 - Angularly

Several biophysical satellite products derived for vegetation depend on SR

Previous work at Barrax and Wytham

National Physical Laborato

Context of research problem

- Significant interest in UAV-based hyperspectral instruments
- Expected to grow as instruments get lighter, cheaper and easier to use
- Surface reflectance validation is expected to become a key use of these instruments
 - Cover a greater area
 - Removes site disturbance
 - Measure inaccessible sites (water, trees, etc.)
 - Compliment permanent infrastructure
 - Measure complicated sites (mixed pixels, etc.)

Premise of SRIX4VEG

- Protocols around this are yet to be developed and lots of people are developing different things (some more systematically than others)
- The idea of SRIX4Veg is to assess the variability associated with different teams conducting the same validation work
- Then move towards a community-agreed protocol to reduce this variability

Premise of SRIX4VEG

fiducial reference measurements for vegetation

Two experiments:

- 1. SR validation data collected as you (the participants) would do it given some pre-defined information
- 2. SR validation data collected by you following a pre-defined initial protocol (developed by the SRIX4Veg team, CSIRO, USGS and GA)

Following feedback from the participants the draft protocol will be refined and put forward as a community good practice protocol

Experiment 1

fiducial reference measurements for vegetation

The first experiment requires each participant to document, prior to the campaign, the procedure they will use to collect SR validation data for a specific (theoretical) satellite overpass.

What we want to know:

- instrument setup
- flight plan
- data capture
- post-processing

This will be the process you follow in the field for experiment 1

Experiment 1

fiducial reference measurements for vegetation

We will provide information on:

- Spatial resolution
- Spectral bands and response function
- Orbit inclination
- Viewing geometry
- Spatial location and extent of each of the satellite pixels on the ground
- Reflectance quantity

Once we have received all of your data collection procedures we (SRIX4Veg team, USGS, CSIRO and GA) will circulate a <u>draft</u> protocol which everyone will follow in the second experiment (the aim is to minimise cross-fertilisation).

The <u>draft</u> protocol will be circulated <u>at least</u> 1 month prior to the campaign so you can gain familiarity with it.

Experiment time line

fiducial reference measurements for vegetation

How will it work

Flight scheduling for comparability

- Each experiment will be a round-robin (everyone will do a flight back-to-back with everyone else)
- Only the pairs will be compared
- Only one UAV in the air at one time
- Because of no self-pairing and AB==BA:
 nPairs = (n*(n-1)) / 2 (n = no of participants)
- Because in a sequence pairs can be made forward and backwards:

nSequences = nPairs / (n-1)

Flight scheduling for comparability

Α	В	С	D	E	F
В	А	В	С	D	E
F	С	D	E	F	D
С	D	А	В	E	А
D	E	E	F	А	В
E	F	F	А	В	С

* works for even numbers; for odd numbers the last participant will have to do one extra flight

On ground instruments

Solar Light Company Microtops II

fiducial reference measurements for vegetation

Trimble base station

ASD FieldSpec 4

Tarpaulin + Spectralon Panel

Other instruments and measurements

- Microtops (measurement of AOT)
- Spectralon panel
- Reflectance tarpaulins
- Differential GPS base station (Trimble)
- Hypernets HYPSTAR (?)

ASD measurements: Spectralon > Light > Middle > Dark > Spectralon

5 spectrums per location @ 4 locations

Expectations of participants

- Be ready for collecting measurements on Monday morning of the 18th July
 - Stay until the end of the 22nd July or whenever all the measurements are completed (whichever is sooner)
- You need to do all data processing specific to your instrument
- You will need to bring anything extra
- You will need to ship your instruments to make sure they arrive on time, ensure they are labelled correctly, and ensure return shipping takes place after the campaign
- Your own/your team's health and safety

What SRIX4VEG is not doing

- Validating a specific satellite overpass
- Developing a protocol for all surface reflectance data collection
- Ground measurements with ASDs in the same location as the UAV overpasses (for the vegetation)

Time line

SRIX4VEG participants

- 12 confirmed participants (with requirements gathered)
- Number of platforms and payloads may be higher

Outputs and next steps

- Post-campaign workshop
- Scientific paper on the intercomparison
- Good practice protocol for SR data collection for validation
- Considerations for future activities Laboratory comparisons Other sites
 - Repeats

Endorsed by:

Committee on Earth Observation Satellites

Funded by:

In collaboration with:

Australian Government

Geoscience Australia

CSIRO

Australia's National Science Agency

In partnership with:

Project partners:

Thanks for your attention

www.frm4veg.org/srix4veg/

